MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dif Unicode version

Theorem 0dif 3899
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif

Proof of Theorem 0dif
StepHypRef Expression
1 difss 3630 . 2
2 ss0 3816 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  \cdif 3472  C_wss 3475   c0 3784
This theorem is referenced by:  fresaun  5761  dffv2  5946  ablfac1eulem  17123  bwthOLD  19911  itgioo  22222  imadifxp  27458  sibf0  28276  ballotlemfval0  28434  ballotlemgun  28463  mdvval  28864  symdif0  29474  fzdifsuc2  31512  ibliooicc  31770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785
  Copyright terms: Public domain W3C validator