MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0el Unicode version

Theorem 0el 3802
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el
Distinct variable groups:   ,   ,

Proof of Theorem 0el
StepHypRef Expression
1 risset 2982 . 2
2 eq0 3800 . . 3
32rexbii 2959 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  E.wrex 2808   c0 3784
This theorem is referenced by:  axinf2  8078  zfinf2  8080  n0el  30600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rex 2813  df-v 3111  df-dif 3478  df-nul 3785
  Copyright terms: Public domain W3C validator