![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 0er | Unicode version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
0er |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5132 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | df-br 4453 | . . . . 5 | |
4 | noel 3788 | . . . . . 6 | |
5 | 4 | pm2.21i 131 | . . . . 5 |
6 | 3, 5 | sylbi 195 | . . . 4 |
7 | 6 | adantl 466 | . . 3 |
8 | 4 | pm2.21i 131 | . . . . 5 |
9 | 3, 8 | sylbi 195 | . . . 4 |
10 | 9 | ad2antrl 727 | . . 3 |
11 | noel 3788 | . . . . . 6 | |
12 | noel 3788 | . . . . . 6 | |
13 | 11, 12 | 2false 350 | . . . . 5 |
14 | df-br 4453 | . . . . 5 | |
15 | 13, 14 | bitr4i 252 | . . . 4 |
16 | 15 | a1i 11 | . . 3 |
17 | 2, 7, 10, 16 | iserd 7356 | . 2 |
18 | 17 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 wtru 1396 e. wcel 1818 c0 3784 <. cop 4035 class class class wbr 4452
Rel wrel 5009
Er wer 7327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |