MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lt1o Unicode version

Theorem 0lt1o 7173
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
0lt1o

Proof of Theorem 0lt1o
StepHypRef Expression
1 eqid 2457 . 2
2 el1o 7168 . 2
31, 2mpbir 209 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  e.wcel 1818   c0 3784   c1o 7142
This theorem is referenced by:  dif20el  7174  oe1m  7213  oen0  7254  oeoa  7265  oeoe  7267  isfin4-3  8716  fin1a2lem4  8804  1lt2pi  9304  indpi  9306  sadcp1  14105  vr1cl2  18232  fvcoe1  18246  vr1cl  18258  subrgvr1cl  18303  coe1mul2lem1  18308  coe1tm  18314  ply1coe  18337  ply1coeOLD  18338  evl1var  18372  evls1var  18374  xkofvcn  20185  pw2f1ocnv  30979  wepwsolem  30987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-sn 4030  df-suc 4889  df-1o 7149
  Copyright terms: Public domain W3C validator