MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xp Unicode version

Theorem 0xp 5085
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp

Proof of Theorem 0xp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5021 . . 3
2 noel 3788 . . . . . . 7
3 simprl 756 . . . . . . 7
42, 3mto 176 . . . . . 6
54nex 1627 . . . . 5
65nex 1627 . . . 4
7 noel 3788 . . . 4
86, 72false 350 . . 3
91, 8bitri 249 . 2
109eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818   c0 3784  <.cop 4035  X.cxp 5002
This theorem is referenced by:  dmxpid  5227  csbres  5281  res0  5283  xp0  5430  xpnz  5431  xpdisj1  5433  difxp2  5438  xpcan2  5449  xpima  5454  unixp  5545  unixpid  5547  xpcoid  5553  fodomr  7688  xpfi  7811  cdaassen  8583  iundom2g  8936  alephadd  8973  hashxplem  12491  ramcl  14547  0subcat  15207  mat0dimbas0  18968  mavmul0g  19055  txindislem  20134  txhaus  20148  tmdgsum  20594  ust0  20722  sibf0  28276  mexval2  28863  0mbf  30060  0heALT  37806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-xp 5010
  Copyright terms: Public domain W3C validator