MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21h Unicode version

Theorem 19.21h 1907
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " is not free in ." See also 19.21 1905 and 19.21v 1729. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypothesis
Ref Expression
19.21h.1
Assertion
Ref Expression
19.21h

Proof of Theorem 19.21h
StepHypRef Expression
1 19.21h.1 . . 3
21nfi 1623 . 2
3219.21 1905 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393
This theorem is referenced by:  hbim1  1918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator