Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23t Unicode version

Theorem 19.23t 1909
 Description: Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 1910. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Assertion
Ref Expression
19.23t

Proof of Theorem 19.23t
StepHypRef Expression
1 exim 1654 . . 3
2 19.9t 1890 . . . 4
32biimpd 207 . . 3
41, 3syl9r 72 . 2
5 nfr 1873 . . . 4
65imim2d 52 . . 3
7 19.38 1662 . . 3
86, 7syl6 33 . 2
94, 8impbid 191 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612  F/wnf 1616 This theorem is referenced by:  19.23  1910  axie2  2430  r19.23t  2935  ceqsalt  3132  vtoclgft  3157  sbciegft  3358  wl-equsald  29992  bj-ceqsalt0  34449  bj-ceqsalt1  34450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator