MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26-3an Unicode version

Theorem 19.26-3an 1682
Description: Theorem 19.26 1680 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
19.26-3an

Proof of Theorem 19.26-3an
StepHypRef Expression
1 19.26 1680 . . 3
2 19.26 1680 . . . 4
32anbi1i 695 . . 3
41, 3bitri 249 . 2
5 df-3an 975 . . 3
65albii 1640 . 2
7 df-3an 975 . 2
84, 6, 73bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  /\w3a 973  A.wal 1393
This theorem is referenced by:  alrim3con13v  33304  19.21a3con13vVD  33652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator