MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Unicode version

Theorem 19.28v 1767
Description: Version of 19.28 1924 with a dv condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v
Distinct variable group:   ,

Proof of Theorem 19.28v
StepHypRef Expression
1 19.26 1680 . 2
2 19.3v 1755 . . 3
32anbi1i 695 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wal 1393
This theorem is referenced by:  reu6  3288  dfer2  7331  kmlem14  8564  kmlem15  8565  19.28vv  31291  bnj1176  34061  bnj1186  34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator