Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3 Unicode version

Theorem 19.3 1888
 Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1755 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1
Assertion
Ref Expression
19.3

Proof of Theorem 19.3
StepHypRef Expression
1 sp 1859 . 2
2 19.3.1 . . 3
32nfri 1874 . 2
41, 3impbii 188 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  A.wal 1393  F/wnf 1616 This theorem is referenced by:  19.27  1923  19.28  1924  19.16  1957  19.17  1958  19.37  1966  2eu4OLD  2381  axrep4  4567  zfcndrep  9013  bj-alexbiex  34253  bj-alalbial  34255  bj-axrep4  34377 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator