![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 19.3 | Unicode version |
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1755 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 |
Ref | Expression |
---|---|
19.3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1859 | . 2 | |
2 | 19.3.1 | . . 3 | |
3 | 2 | nfri 1874 | . 2 |
4 | 1, 3 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 A. wal 1393
F/ wnf 1616 |
This theorem is referenced by: 19.27 1923 19.28 1924 19.16 1957 19.17 1958 19.37 1966 2eu4OLD 2381 axrep4 4567 zfcndrep 9013 bj-alexbiex 34253 bj-alalbial 34255 bj-axrep4 34377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |