MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37iv Unicode version

Theorem 19.37iv 1769
Description: Inference associated with 19.37v 1768. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37iv.1
Assertion
Ref Expression
19.37iv
Distinct variable group:   ,

Proof of Theorem 19.37iv
StepHypRef Expression
1 19.37iv.1 . 2
2 19.37v 1768 . 2
31, 2mpbi 208 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  E.wex 1612
This theorem is referenced by:  eqvinc  3226  bnd  8331  zfcndinf  9017  relopabVD  33701  bnj1093  34036  bnj1186  34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator