![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 19.9 | Unicode version |
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1754 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
19.9.1 |
Ref | Expression |
---|---|
19.9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9.1 | . . 3 | |
2 | 1 | nfri 1874 | . 2 |
3 | 2 | 19.9h 1891 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 E. wex 1612
F/ wnf 1616 |
This theorem is referenced by: exlimd 1914 19.19 1959 19.36 1964 19.44 1969 19.45 1970 19.41 1971 exists1 2388 dfid3 4801 fsplit 6905 ax6e2ndeq 33332 e2ebind 33336 ax6e2ndeqVD 33709 e2ebindVD 33712 e2ebindALT 33729 ax6e2ndeqALT 33731 bnj1189 34065 bj-exexbiex 34254 bj-exalbial 34256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |