MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9t Unicode version

Theorem 19.9t 1890
Description: A closed version of 19.9 1893. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Assertion
Ref Expression
19.9t

Proof of Theorem 19.9t
StepHypRef Expression
1 df-nf 1617 . . 3
2 19.9ht 1889 . . 3
31, 2sylbi 195 . 2
4 19.8a 1857 . 2
53, 4impbid1 203 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612  F/wnf 1616
This theorem is referenced by:  19.9h  1891  19.9d  1892  19.21t  1904  19.23t  1909  spimt  2005  sbft  2120  vtoclegft  3181  bj-cbv3tb  34271  bj-spimtv  34278  bj-sbftv  34345  bj-equsal1t  34395  bj-19.21t  34403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator