![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 1div0 | Unicode version |
Description: You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1div0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-div 10232 | . . 3 | |
2 | riotaex 6261 | . . 3 | |
3 | 1, 2 | dmmpt2 6870 | . 2 |
4 | eqid 2457 | . . 3 | |
5 | eldifsni 4156 | . . . . 5 | |
6 | 5 | adantl 466 | . . . 4 |
7 | 6 | necon2bi 2694 | . . 3 |
8 | 4, 7 | ax-mp 5 | . 2 |
9 | ndmovg 6458 | . 2 | |
10 | 3, 8, 9 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
\ cdif 3472 c0 3784 { csn 4029 X. cxp 5002
dom cdm 5004 iota_ crio 6256 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
cmul 9518 cdiv 10231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-div 10232 |
Copyright terms: Public domain | W3C validator |