MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Unicode version

Theorem 1p1times 9772
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 9633 . . 3
2 id 22 . . 3
31, 1, 2adddird 9642 . 2
4 mulid2 9615 . . 3
54, 4oveq12d 6314 . 2
63, 5eqtrd 2498 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  (class class class)co 6296   cc 9511  1c1 9514   caddc 9516   cmul 9518
This theorem is referenced by:  addcom  9787  addcomd  9803  eqneg  10289  2times  10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-mulcl 9575  ax-mulcom 9577  ax-mulass 9579  ax-distr 9580  ax-1rid 9583  ax-cnre 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299
  Copyright terms: Public domain W3C validator