![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 1sdom | Unicode version |
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 7608.) (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
1sdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4456 | . 2 | |
2 | rexeq 3055 | . . 3 | |
3 | 2 | rexeqbi1dv 3063 | . 2 |
4 | 1onn 7307 | . . . 4 | |
5 | sucdom 7735 | . . . 4 | |
6 | 4, 5 | ax-mp 5 | . . 3 |
7 | df-2o 7150 | . . . 4 | |
8 | 7 | breq1i 4459 | . . 3 |
9 | 2dom 7608 | . . . 4 | |
10 | df2o3 7162 | . . . . 5 | |
11 | vex 3112 | . . . . . . . . . . . 12 | |
12 | vex 3112 | . . . . . . . . . . . 12 | |
13 | 0ex 4582 | . . . . . . . . . . . 12 | |
14 | 4 | elexi 3119 | . . . . . . . . . . . 12 |
15 | 11, 12, 13, 14 | funpr 5644 | . . . . . . . . . . 11 |
16 | df-ne 2654 | . . . . . . . . . . 11 | |
17 | 1n0 7164 | . . . . . . . . . . . . . . 15 | |
18 | 17 | necomi 2727 | . . . . . . . . . . . . . 14 |
19 | 13, 14, 11, 12 | fpr 6079 | . . . . . . . . . . . . . 14 |
20 | 18, 19 | ax-mp 5 | . . . . . . . . . . . . 13 |
21 | df-f1 5598 | . . . . . . . . . . . . 13 | |
22 | 20, 21 | mpbiran 918 | . . . . . . . . . . . 12 |
23 | 13, 11 | cnvsn 5496 | . . . . . . . . . . . . . . 15 |
24 | 14, 12 | cnvsn 5496 | . . . . . . . . . . . . . . 15 |
25 | 23, 24 | uneq12i 3655 | . . . . . . . . . . . . . 14 |
26 | df-pr 4032 | . . . . . . . . . . . . . . . 16 | |
27 | 26 | cnveqi 5182 | . . . . . . . . . . . . . . 15 |
28 | cnvun 5416 | . . . . . . . . . . . . . . 15 | |
29 | 27, 28 | eqtri 2486 | . . . . . . . . . . . . . 14 |
30 | df-pr 4032 | . . . . . . . . . . . . . 14 | |
31 | 25, 29, 30 | 3eqtr4i 2496 | . . . . . . . . . . . . 13 |
32 | 31 | funeqi 5613 | . . . . . . . . . . . 12 |
33 | 22, 32 | bitr2i 250 | . . . . . . . . . . 11 |
34 | 15, 16, 33 | 3imtr3i 265 | . . . . . . . . . 10 |
35 | prssi 4186 | . . . . . . . . . 10 | |
36 | f1ss 5791 | . . . . . . . . . 10 | |
37 | 34, 35, 36 | syl2an 477 | . . . . . . . . 9 |
38 | prex 4694 | . . . . . . . . . 10 | |
39 | f1eq1 5781 | . . . . . . . . . 10 | |
40 | 38, 39 | spcev 3201 | . . . . . . . . 9 |
41 | 37, 40 | syl 16 | . . . . . . . 8 |
42 | vex 3112 | . . . . . . . . 9 | |
43 | 42 | brdom 7548 | . . . . . . . 8 |
44 | 41, 43 | sylibr 212 | . . . . . . 7 |
45 | 44 | expcom 435 | . . . . . 6 |
46 | 45 | rexlimivv 2954 | . . . . 5 |
47 | 10, 46 | syl5eqbr 4485 | . . . 4 |
48 | 9, 47 | impbii 188 | . . 3 |
49 | 6, 8, 48 | 3bitr2i 273 | . 2 |
50 | 1, 3, 49 | vtoclbg 3168 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 E. wex 1612
e. wcel 1818 =/= wne 2652 E. wrex 2808
u. cun 3473 C_ wss 3475 c0 3784 { csn 4029 { cpr 4031
<. cop 4035 class class class wbr 4452
suc csuc 4885
`' ccnv 5003 Fun wfun 5587 --> wf 5589
-1-1-> wf1 5590
com 6700
c1o 7142
c2o 7143
cdom 7534 csdm 7535 |
This theorem is referenced by: unxpdomlem3 7746 frgpnabl 16879 isnzr2 17911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-2o 7150 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 |
Copyright terms: Public domain | W3C validator |