![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 1stconst | Unicode version |
Description: The mapping of a restriction of the function to a constant function. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
1stconst |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnzg 4147 | . . 3 | |
2 | fo1stres 6824 | . . 3 | |
3 | 1, 2 | syl 16 | . 2 |
4 | moeq 3275 | . . . . . 6 | |
5 | 4 | moani 2346 | . . . . 5 |
6 | vex 3112 | . . . . . . . 8 | |
7 | 6 | brres 5285 | . . . . . . 7 |
8 | fo1st 6820 | . . . . . . . . . . 11 | |
9 | fofn 5802 | . . . . . . . . . . 11 | |
10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10 |
11 | vex 3112 | . . . . . . . . . 10 | |
12 | fnbrfvb 5913 | . . . . . . . . . 10 | |
13 | 10, 11, 12 | mp2an 672 | . . . . . . . . 9 |
14 | 13 | anbi1i 695 | . . . . . . . 8 |
15 | elxp7 6833 | . . . . . . . . . . 11 | |
16 | eleq1 2529 | . . . . . . . . . . . . . . 15 | |
17 | 16 | biimpa 484 | . . . . . . . . . . . . . 14 |
18 | 17 | adantrr 716 | . . . . . . . . . . . . 13 |
19 | 18 | adantrl 715 | . . . . . . . . . . . 12 |
20 | elsni 4054 | . . . . . . . . . . . . . 14 | |
21 | eqopi 6834 | . . . . . . . . . . . . . . 15 | |
22 | 21 | an12s 801 | . . . . . . . . . . . . . 14 |
23 | 20, 22 | sylanr2 653 | . . . . . . . . . . . . 13 |
24 | 23 | adantrrl 723 | . . . . . . . . . . . 12 |
25 | 19, 24 | jca 532 | . . . . . . . . . . 11 |
26 | 15, 25 | sylan2b 475 | . . . . . . . . . 10 |
27 | 26 | adantl 466 | . . . . . . . . 9 |
28 | simprr 757 | . . . . . . . . . . . 12 | |
29 | 28 | fveq2d 5875 | . . . . . . . . . . 11 |
30 | simprl 756 | . . . . . . . . . . . 12 | |
31 | simpl 457 | . . . . . . . . . . . 12 | |
32 | op1stg 6812 | . . . . . . . . . . . 12 | |
33 | 30, 31, 32 | syl2anc 661 | . . . . . . . . . . 11 |
34 | 29, 33 | eqtrd 2498 | . . . . . . . . . 10 |
35 | snidg 4055 | . . . . . . . . . . . . 13 | |
36 | 35 | adantr 465 | . . . . . . . . . . . 12 |
37 | opelxpi 5036 | . . . . . . . . . . . 12 | |
38 | 30, 36, 37 | syl2anc 661 | . . . . . . . . . . 11 |
39 | 28, 38 | eqeltrd 2545 | . . . . . . . . . 10 |
40 | 34, 39 | jca 532 | . . . . . . . . 9 |
41 | 27, 40 | impbida 832 | . . . . . . . 8 |
42 | 14, 41 | syl5bbr 259 | . . . . . . 7 |
43 | 7, 42 | syl5bb 257 | . . . . . 6 |
44 | 43 | mobidv 2305 | . . . . 5 |
45 | 5, 44 | mpbiri 233 | . . . 4 |
46 | 45 | alrimiv 1719 | . . 3 |
47 | funcnv2 5652 | . . 3 | |
48 | 46, 47 | sylibr 212 | . 2 |
49 | dff1o3 5827 | . 2 | |
50 | 3, 48, 49 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 E* wmo 2283 =/= wne 2652
cvv 3109
c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 X. cxp 5002
`' ccnv 5003 |` cres 5006 Fun wfun 5587
Fn wfn 5588 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 ` cfv 5593 c1st 6798
c2nd 6799 |
This theorem is referenced by: curry2 6895 domss2 7696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |