![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2albiim | Unicode version |
Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2albiim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1699 | . . 3 | |
2 | 1 | albii 1640 | . 2 |
3 | 19.26 1680 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 |
This theorem is referenced by: sbnf2 2183 2eu6 2383 2eu6OLD 2384 eqopab2b 4782 eqrel 5097 eqrelrel 5109 eqoprab2b 6355 eqrelrd2 27467 pm14.123a 31332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |