MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albiim Unicode version

Theorem 2albiim 1700
Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2albiim

Proof of Theorem 2albiim
StepHypRef Expression
1 albiim 1699 . . 3
21albii 1640 . 2
3 19.26 1680 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393
This theorem is referenced by:  sbnf2  2183  2eu6  2383  2eu6OLD  2384  eqopab2b  4782  eqrel  5097  eqrelrel  5109  eqoprab2b  6355  eqrelrd2  27467  pm14.123a  31332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator