![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2alimi | Unicode version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 |
Ref | Expression |
---|---|
2alimi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 | |
2 | 1 | alimi 1633 | . 2 |
3 | 2 | alimi 1633 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393 |
This theorem is referenced by: mo3OLD 2324 2mo 2373 2moOLD 2374 2eu6 2383 2eu6OLD 2384 euind 3286 reuind 3303 sbnfc2 3854 opelopabt 4764 ssrel 5096 ssrelrel 5108 opabbrex 6339 fnoprabg 6403 tz7.48lem 7125 ssrelf 27466 mpt2bi123f 30571 mptbi12f 30575 ismrc 30633 19.33-2 31287 pm11.63 31301 pm11.71 31303 axc5c4c711to11 31312 bj-3exbi 34207 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1618 ax-4 1631 |
Copyright terms: Public domain | W3C validator |