![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2ax6elem | Unicode version |
Description: We can always find values matching and , as long as they are represented by distinct variables. This theorem merges two ax6e 2002 instances and into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 33331. (Contributed by Wolf Lammen, 27-Sep-2018.) |
Ref | Expression |
---|---|
2ax6elem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2002 | . . . 4 | |
2 | nfnae 2058 | . . . . . 6 | |
3 | nfnae 2058 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | nfeqf 2045 | . . . . . 6 | |
6 | pm3.21 448 | . . . . . 6 | |
7 | 5, 6 | spimed 2007 | . . . . 5 |
8 | 4, 7 | eximd 1882 | . . . 4 |
9 | 1, 8 | mpi 17 | . . 3 |
10 | 9 | ex 434 | . 2 |
11 | ax6e 2002 | . . 3 | |
12 | nfae 2056 | . . . 4 | |
13 | equvini 2087 | . . . . 5 | |
14 | equtrr 1797 | . . . . . . 7 | |
15 | 14 | anim1d 564 | . . . . . 6 |
16 | 15 | aleximi 1653 | . . . . 5 |
17 | 13, 16 | syl5 32 | . . . 4 |
18 | 12, 17 | eximd 1882 | . . 3 |
19 | 11, 18 | mpi 17 | . 2 |
20 | 10, 19 | pm2.61d2 160 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 E. wex 1612 |
This theorem is referenced by: 2ax6e 2194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |