![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2elresin | Unicode version |
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
2elresin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnop 5689 | . . . . . . . 8 | |
2 | fnop 5689 | . . . . . . . 8 | |
3 | 1, 2 | anim12i 566 | . . . . . . 7 |
4 | 3 | an4s 826 | . . . . . 6 |
5 | elin 3686 | . . . . . 6 | |
6 | 4, 5 | sylibr 212 | . . . . 5 |
7 | vex 3112 | . . . . . . . 8 | |
8 | 7 | opres 5288 | . . . . . . 7 |
9 | vex 3112 | . . . . . . . 8 | |
10 | 9 | opres 5288 | . . . . . . 7 |
11 | 8, 10 | anbi12d 710 | . . . . . 6 |
12 | 11 | biimprd 223 | . . . . 5 |
13 | 6, 12 | syl 16 | . . . 4 |
14 | 13 | ex 434 | . . 3 |
15 | 14 | pm2.43d 48 | . 2 |
16 | resss 5302 | . . . 4 | |
17 | 16 | sseli 3499 | . . 3 |
18 | resss 5302 | . . . 4 | |
19 | 18 | sseli 3499 | . . 3 |
20 | 17, 19 | anim12i 566 | . 2 |
21 | 15, 20 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 i^i cin 3474
<. cop 4035 |` cres 5006 Fn wfn 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-dm 5014 df-res 5016 df-fun 5595 df-fn 5596 |
Copyright terms: Public domain | W3C validator |