![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2eu1 | Unicode version |
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 11-Nov-2019.) |
Ref | Expression |
---|---|
2eu1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu2ex 2368 | . . . . 5 | |
2 | df-mo 2287 | . . . . . . 7 | |
3 | 2 | albii 1640 | . . . . . 6 |
4 | euim 2344 | . . . . . . 7 | |
5 | 4 | ex 434 | . . . . . 6 |
6 | 3, 5 | syl5bi 217 | . . . . 5 |
7 | 1, 6 | syl 16 | . . . 4 |
8 | 7 | pm2.43b 50 | . . 3 |
9 | 2euswap 2370 | . . . 4 | |
10 | 8, 9 | syld 44 | . . 3 |
11 | 8, 10 | jcad 533 | . 2 |
12 | 2exeu 2371 | . 2 | |
13 | 11, 12 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
E! weu 2282 E* wmo 2283 |
This theorem is referenced by: 2eu2 2378 2eu3 2379 2eu5 2382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |