![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2eu2 | Unicode version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2313 | . . 3 | |
2 | 2moex 2365 | . . 3 | |
3 | 2eu1 2376 | . . . 4 | |
4 | simpl 457 | . . . 4 | |
5 | 3, 4 | syl6bi 228 | . . 3 |
6 | 1, 2, 5 | 3syl 20 | . 2 |
7 | 2exeu 2371 | . . 3 | |
8 | 7 | expcom 435 | . 2 |
9 | 6, 8 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
E! weu 2282 E* wmo 2283 |
This theorem is referenced by: 2eu8 2386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |