MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu2 Unicode version

Theorem 2eu2 2378
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2

Proof of Theorem 2eu2
StepHypRef Expression
1 eumo 2313 . . 3
2 2moex 2365 . . 3
3 2eu1 2376 . . . 4
4 simpl 457 . . . 4
53, 4syl6bi 228 . . 3
61, 2, 53syl 20 . 2
7 2exeu 2371 . . 3
87expcom 435 . 2
96, 8impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282  E*wmo 2283
This theorem is referenced by:  2eu8  2386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator