MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu2ex Unicode version

Theorem 2eu2ex 2368
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2308 . 2
2 euex 2308 . . 3
32eximi 1656 . 2
41, 3syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  E.wex 1612  E!weu 2282
This theorem is referenced by:  2eu1  2376  2eu1OLD  2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-eu 2286
  Copyright terms: Public domain W3C validator