![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2eu4 | Unicode version |
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one and exactly one "). Naively one might think (incorrectly) that it could be defined by . See 2eu1 2376 for a condition under which the naive definition holds and 2exeu 2371 for a one-way implication. See 2eu5 2382 and 2eu8 2386 for alternate definitions. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 14-Sep-2019.) |
Ref | Expression |
---|---|
2eu4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2310 | . . 3 | |
2 | eu5 2310 | . . . 4 | |
3 | excom 1849 | . . . . 5 | |
4 | 3 | anbi1i 695 | . . . 4 |
5 | 2, 4 | bitri 249 | . . 3 |
6 | 1, 5 | anbi12i 697 | . 2 |
7 | anandi 828 | . 2 | |
8 | 2mo2 2372 | . . 3 | |
9 | 8 | anbi2i 694 | . 2 |
10 | 6, 7, 9 | 3bitr2i 273 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
E! weu 2282 E* wmo 2283 |
This theorem is referenced by: 2eu5 2382 2eu6 2383 2eu6OLD 2384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |