MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu4OLD Unicode version

Theorem 2eu4OLD 2381
Description: Obsolete proof of 2eu4 2380 as of 14-Sep-2019. (Contributed by NM, 3-Dec-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2eu4OLD
Distinct variable groups:   , , ,   , ,

Proof of Theorem 2eu4OLD
StepHypRef Expression
1 eu3v 2312 . . 3
2 eu3v 2312 . . 3
31, 2anbi12i 697 . 2
4 an4 824 . 2
5 excom 1849 . . . . 5
65anbi2i 694 . . . 4
7 anidm 644 . . . 4
86, 7bitri 249 . . 3
9 19.26 1680 . . . . . . . 8
10 nfa1 1897 . . . . . . . . . . 11
111019.3 1888 . . . . . . . . . 10
1211anbi2i 694 . . . . . . . . 9
13 jcab 863 . . . . . . . . . . . . 13
1413albii 1640 . . . . . . . . . . . 12
15 19.26 1680 . . . . . . . . . . . 12
1614, 15bitri 249 . . . . . . . . . . 11
1716albii 1640 . . . . . . . . . 10
18 19.26 1680 . . . . . . . . . 10
1917, 18bitri 249 . . . . . . . . 9
2012, 19bitr4i 252 . . . . . . . 8
219, 20bitr2i 250 . . . . . . 7
22 19.26 1680 . . . . . . . . 9
23 nfa1 1897 . . . . . . . . . . 11
242319.3 1888 . . . . . . . . . 10
25 alcom 1845 . . . . . . . . . 10
2624, 25anbi12i 697 . . . . . . . . 9
2722, 26bitri 249 . . . . . . . 8
2827albii 1640 . . . . . . 7
2921, 28bitr4i 252 . . . . . 6
30 19.23v 1760 . . . . . . . 8
31 19.23v 1760 . . . . . . . 8
3230, 31anbi12i 697 . . . . . . 7
33322albii 1641 . . . . . 6
34 nfe1 1840 . . . . . . . 8
35 nfv 1707 . . . . . . . 8
3634, 35nfim 1920 . . . . . . 7
37 nfe1 1840 . . . . . . . 8
38 nfv 1707 . . . . . . . 8
3937, 38nfim 1920 . . . . . . 7
4036, 39aaan 1975 . . . . . 6
4129, 33, 403bitri 271 . . . . 5
42412exbii 1668 . . . 4
43 eeanv 1988 . . . 4
4442, 43bitr2i 250 . . 3
458, 44anbi12i 697 . 2
463, 4, 453bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator