MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euswap Unicode version

Theorem 2euswap 2370
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2euswap

Proof of Theorem 2euswap
StepHypRef Expression
1 excomim 1850 . . . 4
21a1i 11 . . 3
3 2moswap 2369 . . 3
42, 3anim12d 563 . 2
5 eu5 2310 . 2
6 eu5 2310 . 2
74, 5, 63imtr4g 270 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282  E*wmo 2283
This theorem is referenced by:  2eu1  2376  euxfr2  3284  2reuswap  3302  2reuswap2  27387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator