![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2euswap | Unicode version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.) |
Ref | Expression |
---|---|
2euswap |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1850 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | 2moswap 2369 | . . 3 | |
4 | 2, 3 | anim12d 563 | . 2 |
5 | eu5 2310 | . 2 | |
6 | eu5 2310 | . 2 | |
7 | 4, 5, 6 | 3imtr4g 270 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 E! weu 2282
E* wmo 2283 |
This theorem is referenced by: 2eu1 2376 euxfr2 3284 2reuswap 3302 2reuswap2 27387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |