![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2exbidv | Unicode version |
Description: Formula-building rule for 2 existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 |
Ref | Expression |
---|---|
2exbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 | |
2 | 1 | exbidv 1714 | . 2 |
3 | 2 | exbidv 1714 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
E. wex 1612 |
This theorem is referenced by: 3exbidv 1717 4exbidv 1718 cbvex4v 2034 ceqsex3v 3149 ceqsex4v 3150 2reu5 3308 copsexg 4737 copsexgOLD 4738 euotd 4753 elopab 4760 elxpi 5020 relop 5158 xpdifid 5440 oprabv 6345 cbvoprab3 6373 elrnmpt2res 6416 ov6g 6440 omxpenlem 7638 dcomex 8848 ltresr 9538 fsumcom2 13589 fprodcom2 13788 ispos 15576 fsumvma 23488 dfconngra1 24671 isconngra 24672 isconngra1 24673 1conngra 24675 is2wlkonot 24863 is2spthonot 24864 2wlkonot 24865 2spthonot 24866 el2wlkonot 24869 el2spthonot 24870 el2spthonot0 24871 el2wlkonotot0 24872 2wlkonot3v 24875 2spthonot3v 24876 usg2wotspth 24884 2pthwlkonot 24885 2spotdisj 25061 usg2spot2nb 25065 dfres3 29188 elfuns 29565 itg2addnclem3 30068 2sbc5g 31323 bj-cbvex4vv 34308 dvhopellsm 36844 diblsmopel 36898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |