![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2eximdv | Unicode version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1654. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 |
Ref | Expression |
---|---|
2eximdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 | |
2 | 1 | eximdv 1710 | . 2 |
3 | 2 | eximdv 1710 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 E. wex 1612 |
This theorem is referenced by: 2eu6 2383 cgsex2g 3143 cgsex4g 3144 spc2egv 3196 spc3egv 3198 relop 5158 elres 5314 en3 7777 en4 7778 addsrpr 9473 mulsrpr 9474 hash2prde 12516 hash2prv 12525 hash2sspr 12526 pmtrrn2 16485 usgrarnedg 24384 fundmpss 29196 pellexlem5 30769 fnchoice 31404 fzisoeu 31500 stoweidlem35 31817 stoweidlem60 31842 usgedgimp 32403 usgedgimpALT 32406 ax6e2eq 33330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |