![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2exsb | Unicode version |
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
Ref | Expression |
---|---|
2exsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sb8e 2211 | . 2 | |
2 | 2sb6 2188 | . . 3 | |
3 | 2 | 2exbii 1668 | . 2 |
4 | 1, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
[ wsb 1739 |
This theorem is referenced by: 2moOLD 2374 2eu6 2383 2eu6OLD 2384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |