![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2false | Unicode version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
2false.1 | |
2false.2 |
Ref | Expression |
---|---|
2false |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 | . . 3 | |
2 | 2false.2 | . . 3 | |
3 | 1, 2 | 2th 239 | . 2 |
4 | 3 | con4bii 297 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184 |
This theorem is referenced by: bianfi 925 bifal 1408 iun0 4386 0iun 4387 sbcbr 4505 0xp 5085 cnv0 5414 co02 5526 0er 7365 00lss 17588 00ply1bas 18281 signswch 28518 dandysum2p2e4 32170 pexmidlem8N 35701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |