![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2mo2 | Unicode version |
Description: This theorem extends the idea of "at most one" to expressions in two set variables ("at most one pair and ". Note: this is not expressed by ). 2eu4 2380 relates this extension to double existential uniqueness, if at least one pair exists. (Contributed by Wolf Lammen, 26-Oct-2019.) |
Ref | Expression |
---|---|
2mo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeanv 1988 | . 2 | |
2 | jcab 863 | . . . . 5 | |
3 | 2 | 2albii 1641 | . . . 4 |
4 | 19.26-2 1681 | . . . 4 | |
5 | 19.23v 1760 | . . . . . 6 | |
6 | 5 | albii 1640 | . . . . 5 |
7 | alcom 1845 | . . . . . 6 | |
8 | 19.23v 1760 | . . . . . . 7 | |
9 | 8 | albii 1640 | . . . . . 6 |
10 | 7, 9 | bitri 249 | . . . . 5 |
11 | 6, 10 | anbi12i 697 | . . . 4 |
12 | 3, 4, 11 | 3bitri 271 | . . 3 |
13 | 12 | 2exbii 1668 | . 2 |
14 | mo2v 2289 | . . 3 | |
15 | mo2v 2289 | . . 3 | |
16 | 14, 15 | anbi12i 697 | . 2 |
17 | 1, 13, 16 | 3bitr4ri 278 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
E* wmo 2283 |
This theorem is referenced by: 2mo 2373 2moOLD 2374 2eu4 2380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |