![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2mos | Unicode version |
Description: Double "exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
2mos.1 |
Ref | Expression |
---|---|
2mos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2mo 2373 | . 2 | |
2 | nfv 1707 | . . . . . . 7 | |
3 | 2mos.1 | . . . . . . . 8 | |
4 | 3 | sbiedv 2152 | . . . . . . 7 |
5 | 2, 4 | sbie 2149 | . . . . . 6 |
6 | 5 | anbi2i 694 | . . . . 5 |
7 | 6 | imbi1i 325 | . . . 4 |
8 | 7 | 2albii 1641 | . . 3 |
9 | 8 | 2albii 1641 | . 2 |
10 | 1, 9 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
[ wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |