![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2ndval | Unicode version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4039 | . . . . 5 | |
2 | 1 | rneqd 5235 | . . . 4 |
3 | 2 | unieqd 4259 | . . 3 |
4 | df-2nd 6801 | . . 3 | |
5 | snex 4693 | . . . . 5 | |
6 | 5 | rnex 6734 | . . . 4 |
7 | 6 | uniex 6596 | . . 3 |
8 | 3, 4, 7 | fvmpt 5956 | . 2 |
9 | fvprc 5865 | . . 3 | |
10 | snprc 4093 | . . . . . . . 8 | |
11 | 10 | biimpi 194 | . . . . . . 7 |
12 | 11 | rneqd 5235 | . . . . . 6 |
13 | rn0 5259 | . . . . . 6 | |
14 | 12, 13 | syl6eq 2514 | . . . . 5 |
15 | 14 | unieqd 4259 | . . . 4 |
16 | uni0 4276 | . . . 4 | |
17 | 15, 16 | syl6eq 2514 | . . 3 |
18 | 9, 17 | eqtr4d 2501 | . 2 |
19 | 8, 18 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
e. wcel 1818 cvv 3109
c0 3784 { csn 4029 U. cuni 4249
ran crn 5005 ` cfv 5593 c2nd 6799 |
This theorem is referenced by: 2ndnpr 6805 2nd0 6807 op2nd 6809 2nd2val 6827 elxp6 6832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |