![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Unicode version |
Description: Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 |
Ref | Expression |
---|---|
2ralbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 | |
2 | 1 | ralbidv 2896 | . 2 |
3 | 2 | ralbidv 2896 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wral 2807 |
This theorem is referenced by: cbvral3v 3094 ralxpxfr2d 3224 poeq1 4808 soeq1 4824 isoeq1 6215 isoeq2 6216 isoeq3 6217 fnmpt2ovd 6878 smoeq 7040 xpf1o 7699 nqereu 9328 dedekind 9765 dedekindle 9766 seqcaopr2 12143 wrd2ind 12703 addcn2 13416 mulcn2 13418 mreexexd 15045 catlid 15080 catrid 15081 isfunc 15233 funcres2b 15266 isfull 15279 isfth 15283 fullres2c 15308 isnat 15316 evlfcl 15491 uncfcurf 15508 isprs 15559 isdrs 15563 ispos 15576 istos 15665 isdlat 15823 sgrp1 15918 ismhm 15968 issubm 15978 sgrp2nmndlem4 16046 isnsg 16230 isghm 16267 isga 16329 pmtrdifwrdel 16510 sylow2blem2 16641 efglem 16734 efgi 16737 efgredlemb 16764 efgred 16766 frgpuplem 16790 iscmn 16805 ring1 17248 isirred 17348 islmod 17516 lmodlema 17517 lssset 17580 islssd 17582 islmhm 17673 islmhm2 17684 isobs 18751 dmatel 18995 dmatmulcl 19002 scmateALT 19014 mdetunilem3 19116 mdetunilem4 19117 mdetunilem9 19122 cpmatel 19212 chpscmat 19343 hausnei2 19854 dfcon2 19920 llyeq 19971 nllyeq 19972 isucn2 20782 iducn 20786 ispsmet 20808 ismet 20826 isxmet 20827 metucnOLD 21091 metucn 21092 ngptgp 21150 nlmvscnlem1 21195 xmetdcn2 21342 addcnlem 21368 elcncf 21393 ipcnlem1 21685 cfili 21707 c1lip1 22398 aalioulem5 22732 aalioulem6 22733 aaliou 22734 aaliou2 22736 aaliou2b 22737 ulmcau 22790 ulmdvlem3 22797 cxpcn3lem 23121 dvdsmulf1o 23470 chpdifbndlem2 23739 pntrsumbnd2 23752 istrkgb 23852 axtgsegcon 23861 axtg5seg 23862 axtgpasch 23864 axtgupdim2 23869 axtgeucl 23870 iscgrg 23904 isismt 23921 isperp2 24092 f1otrg 24174 axcontlem10 24276 axcontlem12 24278 isfrgra 24990 isgrpo 25198 isablo 25285 isass 25318 elghomlem1OLD 25363 elghomlem2OLD 25364 iscom2 25414 vacn 25604 smcnlem 25607 lnoval 25667 islno 25668 isphg 25732 ajmoi 25774 ajval 25777 adjmo 26751 elcnop 26776 ellnop 26777 elunop 26791 elhmop 26792 elcnfn 26801 ellnfn 26802 adjeu 26808 adjval 26809 adj1 26852 adjeq 26854 cnlnadjlem9 26994 cnlnadjeu 26997 cnlnssadj 26999 isst 27132 ishst 27133 cdj1i 27352 cdj3i 27360 resspos 27647 resstos 27648 isomnd 27691 isslmd 27745 slmdlema 27746 isorng 27789 qqhucn 27973 ismntop 28004 txpcon 28677 nofulllem4 29465 nofulllem5 29466 heicant 30049 nn0prpw 30141 equivbnd 30286 isismty 30297 heibor1lem 30305 iccbnd 30336 isrngohom 30368 pridlval 30430 ispridl 30431 isdmn3 30471 ismgmhm 32471 issubmgm 32477 isrnghm 32698 lidlmsgrp 32732 lidlrng 32733 dmatALTbasel 33003 lindslinindsimp2 33064 lmod1 33093 islfl 34785 isopos 34905 psubspset 35468 islaut 35807 ispautN 35823 ltrnset 35842 isltrn 35843 istrnN 35882 istendo 36486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |