![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2ralor | Unicode version |
Description: Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
2ralor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal 2905 | . . . 4 | |
2 | rexnal 2905 | . . . 4 | |
3 | 1, 2 | anbi12i 697 | . . 3 |
4 | ioran 490 | . . . . . . 7 | |
5 | 4 | rexbii 2959 | . . . . . 6 |
6 | rexnal 2905 | . . . . . 6 | |
7 | 5, 6 | bitr3i 251 | . . . . 5 |
8 | 7 | rexbii 2959 | . . . 4 |
9 | reeanv 3025 | . . . 4 | |
10 | rexnal 2905 | . . . 4 | |
11 | 8, 9, 10 | 3bitr3ri 276 | . . 3 |
12 | ioran 490 | . . 3 | |
13 | 3, 11, 12 | 3bitr4i 277 | . 2 |
14 | 13 | con4bii 297 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 /\ wa 369 A. wral 2807
E. wrex 2808 |
This theorem is referenced by: ispridl2 30435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |