![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2ralunsn | Unicode version |
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
2ralunsn.1 | |
2ralunsn.2 | |
2ralunsn.3 |
Ref | Expression |
---|---|
2ralunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralunsn.2 | . . . 4 | |
2 | 1 | ralunsn 4237 | . . 3 |
3 | 2 | ralbidv 2896 | . 2 |
4 | 2ralunsn.1 | . . . . . 6 | |
5 | 4 | ralbidv 2896 | . . . . 5 |
6 | 2ralunsn.3 | . . . . 5 | |
7 | 5, 6 | anbi12d 710 | . . . 4 |
8 | 7 | ralunsn 4237 | . . 3 |
9 | r19.26 2984 | . . . 4 | |
10 | 9 | anbi1i 695 | . . 3 |
11 | 8, 10 | syl6bb 261 | . 2 |
12 | 3, 11 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 u. cun 3473 { csn 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 |
Copyright terms: Public domain | W3C validator |