![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2reu5 | Unicode version |
Description: Double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, analogous to 2eu5 2382 and reu3 3289. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2reu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29r 2993 | . . . . . . . 8 | |
2 | r19.29r 2993 | . . . . . . . . 9 | |
3 | 2 | reximi 2925 | . . . . . . . 8 |
4 | pm3.35 587 | . . . . . . . . . 10 | |
5 | 4 | reximi 2925 | . . . . . . . . 9 |
6 | 5 | reximi 2925 | . . . . . . . 8 |
7 | eleq1 2529 | . . . . . . . . . . . . 13 | |
8 | eleq1 2529 | . . . . . . . . . . . . 13 | |
9 | 7, 8 | bi2anan9 873 | . . . . . . . . . . . 12 |
10 | 9 | biimpac 486 | . . . . . . . . . . 11 |
11 | 10 | ancomd 451 | . . . . . . . . . 10 |
12 | 11 | ex 434 | . . . . . . . . 9 |
13 | 12 | rexlimivv 2954 | . . . . . . . 8 |
14 | 1, 3, 6, 13 | 4syl 21 | . . . . . . 7 |
15 | 14 | ex 434 | . . . . . 6 |
16 | 15 | pm4.71rd 635 | . . . . 5 |
17 | anass 649 | . . . . 5 | |
18 | 16, 17 | syl6bb 261 | . . . 4 |
19 | 18 | 2exbidv 1716 | . . 3 |
20 | 19 | pm5.32i 637 | . 2 |
21 | 2reu5lem3 3307 | . 2 | |
22 | df-rex 2813 | . . . 4 | |
23 | r19.42v 3012 | . . . . . 6 | |
24 | df-rex 2813 | . . . . . 6 | |
25 | 23, 24 | bitr3i 251 | . . . . 5 |
26 | 25 | exbii 1667 | . . . 4 |
27 | 22, 26 | bitri 249 | . . 3 |
28 | 27 | anbi2i 694 | . 2 |
29 | 20, 21, 28 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 E. wex 1612 e. wcel 1818
A. wral 2807 E. wrex 2808 E! wreu 2809
E* wrmo 2810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 |
Copyright terms: Public domain | W3C validator |