![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2reu5lem1 | Unicode version |
Description: Lemma for 2reu5 3308. Note that does not mean "there is exactly one in and exactly one in such that holds;" see comment for 2eu5 2382. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2reu5lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . . 3 | |
2 | 1 | reubii 3044 | . 2 |
3 | df-reu 2814 | . . 3 | |
4 | euanv 2355 | . . . . . 6 | |
5 | 4 | bicomi 202 | . . . . 5 |
6 | 3anass 977 | . . . . . . 7 | |
7 | 6 | bicomi 202 | . . . . . 6 |
8 | 7 | eubii 2306 | . . . . 5 |
9 | 5, 8 | bitri 249 | . . . 4 |
10 | 9 | eubii 2306 | . . 3 |
11 | 3, 10 | bitri 249 | . 2 |
12 | 2, 11 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 e. wcel 1818 E! weu 2282
E! wreu 2809 |
This theorem is referenced by: 2reu5lem3 3307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-reu 2814 |
Copyright terms: Public domain | W3C validator |