![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2rexbidv | Unicode version |
Description: Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2rexbidv.1 |
Ref | Expression |
---|---|
2rexbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidv.1 | . . 3 | |
2 | 1 | rexbidv 2968 | . 2 |
3 | 2 | rexbidv 2968 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
E. wrex 2808 |
This theorem is referenced by: f1oiso 6247 elrnmpt2g 6414 elrnmpt2 6415 ralrnmpt2 6417 ovelrn 6451 opiota 6859 omeu 7253 oeeui 7270 eroveu 7425 erov 7427 elfiun 7910 dffi3 7911 xpwdomg 8032 brdom7disj 8930 brdom6disj 8931 genpv 9398 genpelv 9399 axcnre 9562 supmullem1 10534 supmullem2 10535 supmul 10536 sqrlem6 13081 ello1 13338 ello1mpt 13344 elo1 13349 lo1o1 13355 o1lo1 13360 bezoutlem1 14176 bezoutlem3 14178 bezoutlem4 14179 bezout 14180 pythagtriplem2 14341 pythagtriplem19 14357 pythagtrip 14358 pcval 14368 pceu 14370 pczpre 14371 pcdiv 14376 4sqlem2 14467 4sqlem3 14468 4sqlem4 14470 4sq 14482 vdwlem1 14499 vdwlem12 14510 vdwlem13 14511 vdwnnlem1 14513 vdwnnlem2 14514 vdwnnlem3 14515 vdwnn 14516 ramub2 14532 rami 14533 pgpfac1lem3 17128 lspprel 17740 znunit 18602 cayleyhamiltonALT 19392 hausnei 19829 isreg2 19878 txuni2 20066 txbas 20068 xkoopn 20090 txcls 20105 txcnpi 20109 txdis1cn 20136 txtube 20141 txcmplem1 20142 hausdiag 20146 tx1stc 20151 regr1lem2 20241 qustgplem 20619 met2ndci 21025 dyadmax 22007 i1fadd 22102 i1fmul 22103 elply 22592 2sqlem2 23639 2sqlem8 23647 2sqlem9 23648 2sqlem11 23650 istrkgld 23857 axtgeucl 23870 legov 23972 axsegconlem1 24220 axpasch 24244 axlowdim 24264 axeuclidlem 24265 nb3grapr 24453 el2wlksoton 24878 el2spthsoton 24879 el2wlksotot 24882 2wot2wont 24886 vdn0frgrav2 25023 vdgn0frgrav2 25024 vdn1frgrav2 25025 vdgn1frgrav2 25026 usg2spot2nb 25065 br8d 27463 pstmval 27874 eulerpartlemgh 28317 eulerpartlemgs2 28319 cvmliftlem15 28743 cvmlift2lem10 28757 br8 29185 br6 29186 br4 29187 nofulllem5 29466 elaltxp 29625 brsegle 29758 ellines 29802 supadd 30042 ptrest 30048 ismblfin 30055 itg2addnclem3 30068 itg2addnc 30069 nn0prpwlem 30140 nn0prpw 30141 mzpcompact2lem 30684 mzpcompact2 30685 sbc4rexgOLD 30723 pell1qrval 30782 elpell1qr 30783 pell14qrval 30784 elpell14qr 30785 pell1234qrval 30786 elpell1234qr 30787 jm2.27 30950 expdiophlem1 30963 limclner 31657 fourierdlem42 31931 fourierdlem48 31937 isline 35463 psubspi 35471 paddfval 35521 elpadd 35523 paddvaln0N 35525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-rex 2813 |
Copyright terms: Public domain | W3C validator |