MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbiia Unicode version

Theorem 2rexbiia 2973
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
2rexbiia.1
Assertion
Ref Expression
2rexbiia
Distinct variable groups:   ,   ,

Proof of Theorem 2rexbiia
StepHypRef Expression
1 2rexbiia.1 . . 3
21rexbidva 2965 . 2
32rexbiia 2958 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  e.wcel 1818  E.wrex 2808
This theorem is referenced by:  cnref1o  11244  mndpfo  15944  mdsymlem8  27329  xlt2addrd  27578  elunirnmbfm  28224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-rex 2813
  Copyright terms: Public domain W3C validator