![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2sb6 | Unicode version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2173 | . 2 | |
2 | 19.21v 1729 | . . . 4 | |
3 | impexp 446 | . . . . 5 | |
4 | 3 | albii 1640 | . . . 4 |
5 | sb6 2173 | . . . . 5 | |
6 | 5 | imbi2i 312 | . . . 4 |
7 | 2, 4, 6 | 3bitr4ri 278 | . . 3 |
8 | 7 | albii 1640 | . 2 |
9 | 1, 8 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 [ wsb 1739 |
This theorem is referenced by: sbcom2 2189 2exsb 2213 2moOLD 2374 2eu6 2383 2eu6OLD 2384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |