![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2sb6rf | Unicode version |
Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) |
Ref | Expression |
---|---|
2sb5rf.1 | |
2sb5rf.2 |
Ref | Expression |
---|---|
2sb6rf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r 1993 | . . . . 5 | |
2 | sbequ12r 1993 | . . . . 5 | |
3 | 1, 2 | sylan9bb 699 | . . . 4 |
4 | 3 | pm5.74i 245 | . . 3 |
5 | 4 | 2albii 1641 | . 2 |
6 | 2sb5rf.2 | . . . . 5 | |
7 | 6 | 19.23 1910 | . . . 4 |
8 | 7 | albii 1640 | . . 3 |
9 | 2sb5rf.1 | . . . 4 | |
10 | 9 | 19.23 1910 | . . 3 |
11 | 8, 10 | bitri 249 | . 2 |
12 | 2ax6e 2194 | . . 3 | |
13 | pm5.5 336 | . . 3 | |
14 | 12, 13 | ax-mp 5 | . 2 |
15 | 5, 11, 14 | 3bitrri 272 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
F/ wnf 1616 [ wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |