MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Unicode version

Theorem 2sp 1866
Description: A double specialization (see sp 1859). Another double specialization, closer to PM*11.1, is 2stdpc4 2095. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp

Proof of Theorem 2sp
StepHypRef Expression
1 sp 1859 . 2
21sps 1865 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  cbv1h  2018  mopickOLD  2357  csbie2t  3463  copsex2t  4739  fundmpss  29196  wfrlem5  29347  frrlem5  29391  mbfresfi  30061  pm14.123b  31333  bj-cbv1hv  34293  ax11-pm  34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator