MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2stdpc4 Unicode version

Theorem 2stdpc4 2095
Description: A double specialization using explicit substitution. This is Theorem PM*11.1 in [WhiteheadRussell] p. 159. See stdpc4 2094 for the analogous single specialization. See 2sp 1866 for another double specialization. (Contributed by Andrew Salmon, 24-May-2011.) (Revised by BJ, 21-Oct-2018.)
Assertion
Ref Expression
2stdpc4

Proof of Theorem 2stdpc4
StepHypRef Expression
1 stdpc4 2094 . . 3
21alimi 1633 . 2
3 stdpc4 2094 . 2
42, 3syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  [wsb 1739
This theorem is referenced by:  pm11.11  31279  ax11-pm2  34409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-sb 1740
  Copyright terms: Public domain W3C validator