MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an6 Unicode version

Theorem 3an6 1309
Description: Analog of an4 824 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3an6

Proof of Theorem 3an6
StepHypRef Expression
1 an6 1308 . 2
21bicomi 202 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  /\w3a 973
This theorem is referenced by:  an33rean  1342  f13dfv  6180  poxp  6912  axcontlem8  24274  cusgra3v  24464  wfrlem4  29346  cgr3tr4  29702  cotr2g  37786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator