![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3an6 | Unicode version |
Description: Analog of an4 824 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3an6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an6 1308 | . 2 | |
2 | 1 | bicomi 202 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: an33rean 1342 f13dfv 6180 poxp 6912 axcontlem8 24274 cusgra3v 24464 wfrlem4 29346 cgr3tr4 29702 cotr2g 37786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |