MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anandis Unicode version

Theorem 3anandis 1330
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.)
Hypothesis
Ref Expression
3anandis.1
Assertion
Ref Expression
3anandis

Proof of Theorem 3anandis
StepHypRef Expression
1 simpl 457 . 2
2 simpr1 1002 . 2
3 simpr2 1003 . 2
4 simpr3 1004 . 2
5 3anandis.1 . 2
61, 2, 1, 3, 1, 4, 5syl222anc 1244 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator