MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi2i Unicode version

Theorem 3anbi2i 1188
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1
Assertion
Ref Expression
3anbi2i

Proof of Theorem 3anbi2i
StepHypRef Expression
1 biid 236 . 2
2 3anbi1i.1 . 2
3 biid 236 . 2
41, 2, 33anbi123i 1185 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\w3a 973
This theorem is referenced by:  f13dfv  6180  axgroth4  9231  brfi1uzind  12532  cusgra3v  24464  bnj543  33951  bnj916  33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator