![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 3anbi3d | Unicode version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 |
Ref | Expression |
---|---|
3anbi3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 237 | . 2 | |
2 | 3anbi1d.1 | . 2 | |
3 | 1, 2 | 3anbi13d 1301 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 |
This theorem is referenced by: ceqsex3v 3149 ceqsex4v 3150 ceqsex8v 3152 vtocl3gaf 3176 mob 3281 offval22 6879 smogt 7057 cfsmolem 8671 fseq1m1p1 11782 2swrd1eqwrdeq 12679 2swrd2eqwrdeq 12891 prodmo 13743 fprod 13748 divalg 14061 funcres2b 15266 posi 15579 mhmlem 16190 isdrngrd 17422 lmodlema 17517 connsub 19922 lmmbr3 21699 lmmcvg 21700 dvmptfsum 22376 axtg5seg 23862 axtgupdim2 23869 axtgeucl 23870 hlcomb 23987 iscgra 24169 brbtwn 24202 axlowdim 24264 axeuclidlem 24265 1pthoncl 24594 3v3e3cycl1 24644 el2wlkonot 24869 el2spthonot 24870 el2spthonot0 24871 usg2wlkonot 24883 rusgra0edg 24955 2spotdisj 25061 nvi 25507 isslmd 27745 slmdlema 27746 afsval 28551 brafs 28552 cvmlift3lem2 28765 cvmlift3lem4 28767 cvmlift3 28773 frrlem1 29387 brofs 29655 brifs 29693 cgr3permute1 29698 brcolinear2 29708 colineardim1 29711 brfs 29729 btwnconn1 29751 brsegle 29758 iscringd 30396 monotoddzz 30879 jm2.27 30950 mendlmod 31142 fmulcl 31575 fmuldfeqlem1 31576 fmuldfeq 31577 fprodcncf 31704 dvnmptdivc 31735 dvnprodlem2 31744 dvnprodlem3 31745 stoweidlem6 31788 stoweidlem8 31790 stoweidlem26 31808 stoweidlem31 31813 stoweidlem62 31844 fourierdlem41 31930 fourierdlem48 31937 fourierdlem49 31938 usgra2pth0 32355 bnj981 34008 bnj1326 34082 oposlem 34907 ishlat1 35077 3dim1lem5 35190 lvoli2 35305 cdlemk42 36667 diclspsn 36921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |