MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anor Unicode version

Theorem 3anor 981
Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.)
Assertion
Ref Expression
3anor

Proof of Theorem 3anor
StepHypRef Expression
1 df-3an 967 . 2
2 anor 489 . . . 4
3 ianor 488 . . . . 5
43orbi1i 520 . . . 4
52, 4xchbinx 310 . . 3
6 df-3or 966 . . 3
75, 6xchbinxr 311 . 2
81, 7bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  /\wa 369  \/w3o 964  /\w3a 965
This theorem is referenced by:  3ianor  982  ne3anior  2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967
  Copyright terms: Public domain W3C validator